
STATISTICS 2023	NAME IN INK/PRINT	Key
EXAM TWO	SIGNATURE IN INK	
SPRING 2019	CWID IN INK	
TRUE OR FALSE. Answ	er with a capital T or F.	(4 points each)
1. A continuous r	andom variable has probability on ir es.	ntervals of values, but no
	ction for a Poisson random variable on the value of the parameter for the	
3. A continuous redensity function and the arroyalues.	andom variable has probability that or ea under the curve indicates the pro	described with a probability bability for a specific interval of
4. A variable that values that are outside an	has a normal distribution has approxinterval that is within one standard d	ximately 68% of its probability on eviation of the mean.
5. The mean of the standard deviation of the population divided by square	ne sample mean is equal to the mean ne sample mean is equal to the stand re-root of n.	n of the sampled population and dard deviation of the sampled
Z-TABLE QUESTIONS. W	Vrite the answer on the line.	+(4 points each)
P(Z=	t is the value of P($Z < -0.48$)? (Z < -0.48) = (2.48)	
-1.76 = 1-1	P(2<.48) = /68439:48	D .
7. What	is the value of z_0 , such that the P(z_0	$(z < z_0) = 0.03920$ $(z_0) = 0.03920 = 0.03920 = 0.03920$
		3
0.68629 8. What	is the value of P(-1.62 < Z < 0.64)	76 0
(女< • 67	1-112<-1.62)	
= P(Z<.64)	1-P(z>1.62) -1.62	- 62
= P(Z<.64)	1-L1-P(Z<1.62) = ,7=	3891-11-,947387=0.68629

STATISTICS 2023 STATE THE ANSWER.	EXAM TWO Write the answer on	SPRING 2019 the line.	PAGE TWO (4 points each)
\$22,000, but if it does not expected profit from this	promoter is planning a ot rain the profit will be	n outdoor concert. If it ra \$54,000. If the chance o	ins the promoter will lose of rain is .25, what is the
$0.8603 \qquad \begin{array}{c} \times \\ \text{P(x)} \\ \text{10} \end{array}$	$\frac{-22,000}{.25}$. $\frac{54,000}{.25}$	$\int_{X} A = \sum_{X} p(x) = -23$ $= 3$ ned by an American car	of rain is .25, wh <mark>at is the</mark> 2, $000 (.25) + 54, 000 (.75)$ 3.5, 000 company has a 90%
chance of exceeding the type purchased by local the MPG rating on the w	e MPG fuel use rating of taxi service, what is the rindow sticker? Round	on the window sticker. One probability that more the your answer to 4 digits p	ut of seven cars of this an 5 of them will exceed east the decimal.
$\frac{0.1756}{\text{the firm will identify som}} 11.4$	$P(x \ge 6) = P(x = 6)$ An accounting firm is integrated accounting problem in	1+P(X=7)=(6).9(1	ns. The probability that rations is 0.15. What is
Round your answer to 4	digits past the decimal $(\leq 1) = P(\chi = 0) + P$	(x=1)	1.15)
0.9666 12.1 is the probability that the your answer to 4 digits p	= $\binom{20}{0}$, $15\binom{1}{15}$. If there are 3.4 vehicle are will be one or more past the decimal. $\times \sqrt{15}$	$(5)^{20} + (20)$. $(1-15)^{19}$ accidents on a major high accidents in a randomly of	chosen month? Round
uniformly distributed ran the next three questions	dom variable between	n a specific type of an aid and 3.5 liters. Use this dreeded, X N Unif	information to answer
an automotive cylinder?	What is the average am $\frac{c+d}{2} = \frac{l+3.5}{2} = \frac{1}{2}$		
special type of an autom		nat the amount of acid neen 1.5 and 2.5 liters?	eded to clean this
$\frac{1.5}{\text{acid?}}$ 15. T		eaning jobs will use less	than how many liters of
or $\chi_0 = 3$	1,5 -,8 (2,5)=1.5	1.2 ×	·8 / ×

1.25

> 1733 =

At a large hospital complex the time required for an essential prescription medicine to be delivered from the pharmacy to a patient's hospital room is a normally distributed random variable with a mean of 7 minutes and a standard deviation of 1.2 minutes. Use this information to address the remaining questions on this page.

0.88045

16. What is the probability that the time required to deliver the prescription

medicine is between 4.36 and 8.5 minutes?
$$P(4.36 < x < 8.5) = P(4.36 < x < 8.5) = P(2 < 1.25) - P(2 < -2.2) = P(2 < 1.25) - P(2 < 2.2) = P(2 < 1.25) - P(2 < 1.25) = P(2 <$$

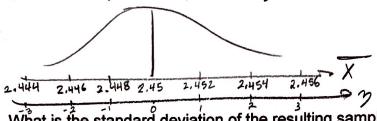
17. Two and one-half percent of the time, the time required to deliver the

prescription medicine is more than how many minutes? 1-.025 = 9750 Find Xo, such that P(X > Xo) = .025 Soln. 1. Find yo, P(2 > yo) = 0.025 = try = 1.96 2. Cale X=1+300=7+1.96(12)=9.352

0.12747 18. What is the probability that the time required to deliver the prescription

medicine is between 8.32 and 9.88 minutes? P(8.32 < X < 9.88) = P(2 < 2.4) - P(2 < 1.1) $= P(\frac{8.32-7}{1.2} < \frac{X-M}{\sigma} < \frac{9.88-7}{1.2}) = 0.99180 - 0.86433$ = 0.12747

= P(1.14 7 (2.4)) = 0.12747 19. The thirty-third percentile for this distribution of the time required to


6.472

deliver the prescription medicine is equal to what value? Find Xo, such that P(x < Xo) = .33

0.00135 20. The patient gets a price reduction for slow delivery that requires more than 10.6 minutes. What is the probability that a patient will receive this price reduction?

$$P(x>10.6) = |-P(x<3) = |-P(x<3) = |-P(x-M) > |0.6-7| = |-0.60135$$

A field medical device injects patients with a specific amount of fluid, but the process has a slight amount of variation. One setting on the device has a mean injection amount of 2.45ml with a standard deviation of 0.02ml. Assume that samples of 100 observations were repeatedly recorded from this setting on the field medical injection device. Consider the set of all sample means that would result from this repeated sampling process. Use this information to answer all the problems on this page. M = 2.45, $\sigma = 0.02$, n = 100, $X \sim N(2.45, 0)$, $C = \frac{100}{100} = .002$

0.002

21. What is the standard deviation of the resulting sample means from this setting on the field medical injection device?

$$V_{\overline{X}} = \frac{1}{\sqrt{100}} = 0.002$$

2.45088

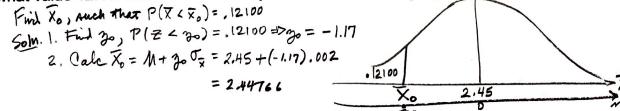
22. Sixty-seven percent of the resulting sample means from this setting on the field medical injection device is less than how many ml? State your answer with 5 digits past the decimal. Find \overline{X}_0 , such that $P(\overline{X} < \overline{X}_0) = .67$

181. Find
$$X_0$$
, such that $P(X < X_0) = .67$

Soln. 1. Find J_0 , $P(Z < J_0) = .67$

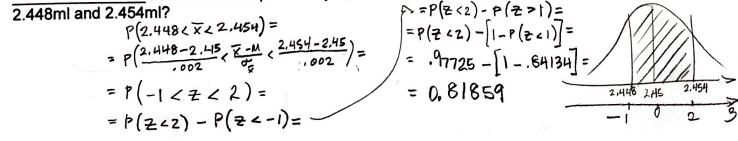
2. Calc $X_0 = M_X + J_0 = 0.44$

$$= 2.45 + (.44).002$$


$$= 2.45088$$

0.00219 23. The medicine being injected by the device can be toxic if too much is injected. What percent of the time is the mean of 100 injections greater than 2.4557ml?

$$P(X > 2.4557) =$$
= $P(X - M) > \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) > \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) > \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) > \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$
= $P(X - M) = \frac{2.4557 - 2.45}{0.002} =$


2.44766

24. The mean of 100 observations from this field medical injection device will be less than what value 12.1% of the time? State your answer with 5 digits past the decimal.

0.81859

25. What is the probability that the resulting sample mean is between

