STATISTICS 2023	NAME, IN INK					
FINAL EXAM	SIGNATURE, IN INK	2				
SPRING 2000	SS NUMBER, IN INK					
TRUE OR FALSE. Answer with a	capital T or F.	(3 points each)				
1. Confidence intervals u values of point estimates.	sed to estimate population p	arameters are centered on				
2. The confidence level as intervals tells the percent of all coparameter being estimated.	ssociated with the equation to infidence intervals that contain					
3. The significance level, the researcher will tolerate in order	α, of a hypothesis test repre er to reject the null hypothes					
4. The standard deviation	n of a sample measures the	center of the data set.				
5. The p-value of a hypoth tolerated if the researcher conclu alternative hypothesis.	nesis test represents the errodes that the data supports the	or rate that must be ne statement in the				
6. The point estimates us always equal to the parameter be	ed to estimate population pa eing estimated.	rameters are almost				
7. The standard errors of from which the sample was draw	point estimates depend on the name of the sample	he spread in the population				
8. The mean of the t and	Z distributions is the value th	iree.				
9. If a Z hypothesis test grandless of the sign in the alter		e that is less than 1.0 in ance level of 1%,				
10. In a linear regression s through at least half of the data p	ituation the line that is fitted to oints.	to bivariate data runs				

STATISTICS 2023 STATE THE ANSWER.	FINAL EXAM State the answer on the line	SPRING 2000	PAGE TWO (3 points each)
value of 2.41 and the re	a hypothesis test based on esearcher is trying to prove the hat is the p-value of the hypo	nat the population m	
12. If statistic is equal to 0.02	the p-value in a right tail 44 what is the numerical valu	hypothesis test ba ue of the test statisti	sed on a z-test c?
observations the absol	n a two-tail hypothesis test ute value of the test statistic null hypothesis with only a 0	must exceed what	
was attempting to prov	a researcher who was comp re that the mean of populati ation two what is the appropr	on one is more that	an 5 units larger
mean of the sample fro	the mean of the sample from population two is 9.8 what of population one minus the m	t is the numerical v	alue of the point
sample of 19 observat	a sample of 23 observations tions had a sample variance riance estimate based on the	of 5.6 then what	is the numerical
A sample of weights in answer the remaining of	tons is (43, 21, 88, 43 questions on this page.	3, 97, 68). Use	this sample to
17. Si population of weights.	tate the numerical value of th	e point estimate for	the mean of the
	tate the numerical value of th tion of weights. Round your a		
weights is 24.49, then v	ssume that the standard deving what is the numerical value of opulation mean? Round you	f the estimated stan	dard error of the
20. A population mean is 10, population mean is equ	ssume that the standard erro then what is the numerical va al to 50?	r of the point estima alue of the test stati	ate for the stic to test if the
	he p-value is between what to researcher is trying to prove t		

STATISTICS 2023 FINAL EXAM STATE THE ANSWER. State the answer on the line.

SPRING 2000

PAGE THREE (3 points each)

The average costs for two types of advertising were compared using the following data. Ten weeks of sales were recorded for each type of advertising. Use this information to answer the questions on this page.

Advertising Type One n ₁ =10	Advertising Type Two n ₂ =10					
_ x ₁ = \$590	x ₂ = \$575					
$s_1^2 = \$1,600$	$s_2^2 = $2,500$					
22. What is the numerical value of the point estimate for the difference between the average costs for these two types of advertising?						
23. What is the appropriate alternative hypothesis if the research question is "Do the data indicate that the average sales for advertising type one are more than the average sales for advertising type two?"						
24. What is the numeric value of the to attempt to support the alternative hypothesis described as a support to attempt to support the alternative hypothesis described as a support to attempt to support the alternative hypothesis described as a support to attempt to support the alternative hypothesis described as a support to attempt to support the alternative hypothesis described as a support to attempt to support the alternative hypothesis described as a support to attempt to support the alternative hypothesis described as a support to attempt to support the alternative hypothesis described as a support to attempt to support the alternative hypothesis described as a support to attempt to support the alternative hypothesis described as a support to a suppo						
25. If the sales averages for the twist the name of the distribution of the test statistic?	o advertising types are equal what					
26. In this situation the null hypothesis would be rejected at the 1% significance level if the observed test statistic value is more than what value?						
27. If the p-value of this hypothesis	s test is 0.009 would one conclude					

that the average sales for advertising type one is more than the average sales for

advertising type two at the 5% significance level? Answer with YES or NO.

A biva		ata set	had th		EXAN		SPRING 20 s. Use this da	ata to a	PAGE FOUR
tnree X	questic 1	ons. 2	2	1	3	3			(3 points each)
у	5	7	9	4	10	12			
that v	vould r	2	8. State	e the no	umeric ate data	value of the a above. Sta	least-squares te your answ	s estima er with	ate of the slope two digits past
	ecimal.								
29. State the numeric value of the least-squares estimate of the y-intercept that would result from the bivariate data above. Round your answer to two									
digits	past th	ne deci	mal.						
would									correlation that digits past the
Assume a linear model is fitted to a bivariate data set and the least-squares estimated regression equation that resulted is stated below. Use this information to answer the remaining questions on this page. (3 points each)									
$\hat{y} = 25.2 + 2.7x$									
avera	ige y-va	3 alue wh			e num	eric value of	the least so	luares	estimate of the
increa	ases by		2. How	much	does t	he least-squ	ares estimate	of y ir	ncrease when x
1.35	what is								of the slope is equal to zero?

b