

STATISTICS 2023 NAME, IN INK (print) _____

EXAM THREE **SIGNATURE, IN INK** _____

FALL 2015 **CWID NUMBER, IN INK** _____

Once this exam is graded and returned to you retain it for grade verification.
TRUE OR FALSE. Answer with a capital T or F. (3 points each)

_____ 1. As the sample size increases, the standard errors of the point estimates also increase.

_____ 2. Sample statistics calculated from observed data are used as point estimates for population parameter values.

_____ 3. The decision in a hypothesis test is whether to reject or not reject the alternative hypothesis.

_____ 4. Ten percent of all the confidence intervals calculated with a 90% confidence level will not contain the population parameter being estimated by the interval.

_____ 5. If the data provides a very large p-value then a researcher would conclude that the data supports the statement in the null hypothesis.

_____ 6. The rejection region in a hypothesis test identifies the values of the test statistic that would be most likely to occur assuming the null hypothesis is true.

_____ 7. A confidence interval that estimates a population mean is centered on a point estimate for the population mean.

Use of t table. State the answer on the line. (3 points each)

_____ 8. State the value of t_0 , if the $P(-t_0 < t < t_0) = .95$ and the $df = 17$.

_____ 9. $P(t < -2.262) = ?$, if the $n = 10$

_____ 10. What is the $P(t > 1.706)$ if $df = 26$?

_____ 11. What is the p-value of a two-tail hypothesis test based on a large sample if the test statistic value is 1.73?

_____ 12. If a 99% confidence interval to estimate a population mean is (43.3, 90.7) what is the value of the point estimate for the population mean?

_____ 13. If an 80% confidence interval based on a large sample to estimate a population mean is (77, 102) then what is the value of the standard error of the point estimate for the population mean? Round your answer to two digits past the decimal.

_____ 14. If the test statistic in a right tail z hypothesis test is 2.55, what is the p-value for the test?

_____ 15. Assume a 96% confidence interval to estimate the proportion of students who commute to campus from outside Stillwater is (0.13, 0.18). What is the numerical value of the point estimate for the proportion of students who commute to campus from outside Stillwater?

_____ 16. A sample of 400 OSU students had an average GPA of 2.98 and a standard deviation of 0.2. Based on this sample, what is the 95% confidence interval to estimate the average GPA of the population of OSU students? State the upper and lower bounds on your interval to four digits past the decimal.

_____ 17. How many units wide is a 98% confidence interval to estimate the mean based on a sample of 28 observations with a sample standard deviation of 23.55 units? State the answer as an integer with no digits past the decimal.

_____ 18. In a right tail hypothesis test on the mean based on a sample of only 13 observations what value must the test statistic exceed if the null hypothesis is rejected at the 5% significance level?

_____ 19. How many coyotes would be required for a sample to estimate the mean body weight to within 1.1 pounds with 95% confidence if the standard deviation of the coyote body weight is known to be 3 pounds?

_____ 20. If a sample of one hundred observations drawn from a population with a standard deviation 20 yields a confidence interval to estimate the population mean of (21.71, 28.29), what level of confidence was used to construct the interval?

A marketing executive at Walmart is interested in estimating the mean price of toasters so that the new line coming out in the fall is reasonable priced in comparison to other retail stores. Assume that a random sample of 144 toasters was examined. Based on this sample the mean price of toasters is \$57.50 with a standard deviation of \$9.30. Use this information to answer the next four questions.

_____ 21. What is the numerical value of the point estimate for the mean price of toasters?

_____ 22. What is the numerical value of the estimated standard error for the point estimate for the mean price of toasters? State the answer with three digits past the decimal.

_____ 23. Assume that the estimated standard error of the point estimate for the mean price of toasters is \$1.75. What is the numerical value of the bound of error for a 95% confidence interval to estimate the mean price of toasters?

_____ 24. If the estimated standard error for the point estimate for the mean price of toasters is \$1.75 what is the numerical value of the test statistic to test whether the mean price of toasters is \$61?

In a historic governor's election, Brad Henry was elected Governor of Oklahoma with 448,133 votes, only 6,357 votes more than Steve Largent. Four hundred students were questioned if they thought that there should have been a recount of votes for the gubernatorial race. One hundred and twenty students said that they thought there should have been a recount. Use this information to answer the remaining questions on this page.

_____ 25. Based on this sample what is the numerical value of the point estimate for the proportion of students who thought that there should have been a recount?

_____ 26. What is the numerical value of the estimated standard error for the point estimate for the proportion of students who thought that there should have been a recount? Round the answer to four digits past the decimal.

_____ 27. Assume that the estimated standard error for the point estimate for the proportion of students who thought that there should be a recount is 0.0125. What is the numerical value of the test statistic to test the hypothesis that 25% of students thought that there should have been a recount?

The distance people travel during the winter holidays is assumed to be normally distributed. A sample of 22 people is taken and the distance they traveled during the holiday season is recorded in miles. This sample of 22 produced a mean distance of 165 miles with a standard deviation of 52. Use this information to answer the questions on this page.

_____ 28. State the alternative hypothesis if the research question is, "Do the data support the idea that the mean distance traveled during the holidays differs from 145 miles?"

_____ 29. State the numerical value of the test statistic that would result from this situation. Round your answer to one digit past the decimal.

_____ 30. What is the name of the distribution that represents the set of possible test statistic values if in fact the mean distance driven during the holidays is 145 miles?

_____ 31. The null hypothesis in this situation would be rejected at the 5% level if the absolute value of the test statistic is more than what value?

_____ 32. Assume that the value of the test statistic in this situation was 3.2. What is the lowest value of alpha for which the null hypothesis can be rejected in this situation?

_____ 33. Assume the p-value in this hypothesis test is 0.03. Would the null hypothesis be rejected at the 5% significance level in this case? Answer with a YES or NO.

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899
2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361
2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520
2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.99643
2.7	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.99736
2.8	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.99807
2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.99861
3.0	.99865	.99869	.99874	.99878	.99882	.99886	.99889	.99893	.99896	.99900
3.1	.99903	.99906	.99910	.99913	.99916	.99918	.99921	.99924	.99926	.99929
3.2	.99931	.99934	.99936	.99938	.99940	.99942	.99944	.99946	.99948	.99950
3.3	.99952	.99953	.99955	.99957	.99958	.99960	.99961	.99962	.99964	.99965
3.4	.99966	.99968	.99969	.99970	.99971	.99972	.99973	.99974	.99975	.99976
3.5	.99977	.99978	.99978	.99979	.99980	.99981	.99981	.99982	.99983	.99983
3.6	.99984	.99985	.99985	.99986	.99986	.99987	.99987	.99988	.99988	.99989
3.7	.99989	.99990	.99990	.99990	.99991	.99991	.99992	.99992	.99992	.99992
3.8	.99993	.99993	.99993	.99994	.99994	.99994	.99994	.99995	.99995	.99995
3.9	.99995	.99995	.99996	.99996	.99996	.99996	.99996	.99996	.99997	.99997

t Table

cum. prob	<i>t</i>._{.50}	<i>t</i>._{.75}	<i>t</i>._{.80}	<i>t</i>._{.85}	<i>t</i>._{.90}	<i>t</i>._{.95}	<i>t</i>._{.975}	<i>t</i>._{.99}	<i>t</i>._{.995}	<i>t</i>._{.999}	<i>t</i>._{.9995}
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
	Confidence Level										