STATISTICS 2023	NAME, IN INK
EXAM TWO	SIGNATURE, IN INK
FALL 2015	CWID, IN INK
Retain this exam for grade verification	ation once it is graded and returned to you.
TRUE OR FALSE. Answer with a c	capital T or F. (4 points each)
1. The amount of water flow variable.	ing per minute through an irrigation pump is a discrete random
2. A continuous random var outcomes in n independent trials.	iable is a variable that can be described as the number of success
3. Probability mass function random variable.	s indicate how much probability occurs at each value of a discrete
4. The mean or expected values of the variable weighted by the	alue of a discrete random variable is the weighted sum of the neir probabilities.
5. If a variable has a standa and the variance is always one square	rd normal distribution then the mean of the variable is always one ared.
STANDARD NORMAL DISTRIBUT	ION QUESTIONS. State the answer on the line. (4 points each)
6. Find the P(Z<-1.2).	
7. Find z_0 , if $P(Z < z_0)$	= 0.16853.
8. Find the P(0.87 < 2	Z < 1.56).
9. What is the P(Z >	- 0.48)?

STATE THE ANSWER. State the answer on the line given.	FALL 2015	(4 points each)
10. Consider a lottery game in which a person can the people who play win \$0 and the probability of winning \$1 is a winning amount in this lottery game?		
11. Assume that twenty percent of the files in certa with a computer virus, called VIRO. If you choose nine files at rathree of them are contaminated with the computer virus, VIRO? the decimal.	andom what is the pr	obability that
12. Twelve percent of the steel beams made by US to be 1/64 of an inch too wide. If you purchased eight of the bea a bridge construction what is the probability that at most one of to be 1/64 of an inch too wide? Round your answer to five digits	ams made during tha the beams you purch	t month to use in
13. If on average the computer server serving your hour, then what is the probability of 6 errors in one hour? Round decimal.		
The amount of blood needed at a hospital during each twenty distributed between the values of 400 pints and 800 pints. Use three questions.	•	-
14. What is the expected amount of blood needed period?	at this hospital in a tv	wenty-four hour
15. What is the probability that the hospital would n twenty-four hour period?	need more than 700 ր	pints of blood in a
16. To provide appropriate services, the hospital new blood needed for next twenty-four hour period. How many pints at the beginning of each twenty-four hour period if they want to he there is only a 12% chance of running out of blood in any twenty	of blood should they nave enough blood ir	have in storage

STATISTICS 2023 STATE THE ANSWEI	EXAM TWO R. State the answer on the line given.	FALL 2015	PAGE THREE (4 points each)
The fuel consumption	of a certain type of car measured in miles n of 24mpg and a standard deviation of 2r		normally
	-three percent of the time this type of car he Jse the closest value on the Z table.	nas miles per gallon	greater than what
	ty five percent of the time this type of car h te this answer as an interval centered on th		n between what
19. What measured in miles per	t is the value of the 50 th percentile for the c gallon (mpg)?	listribution of fuel co	onsumption
20. What	t is the probability that this type of car exce	eds 27.3mpg?	
21. Only many miles per gallon	1.5% of the time this type of car has fuel of (mpg)?	consumption that is I	less than how

STATISTICS 2023 EXAM TWO FALL 2015 PAGE FOUR STATE THE ANSWER. State the answer on the line given. 4 points each)

Assume 400 observations were randomly drawn from a population of monthly returns on a risky investment, which has a mean of 65 dollars and a standard deviation of 50 dollars. Use this information to answer the remaining questions.
22. What is the numerical value of the mean of all possible sample means that would result from the above situation?
23. What is the probability that the sample mean that results from the above situation will be between 66.25 and 70.5?
24. Only 0.24% (or 0.0024) of the sample means that result from the above sampling situation will be less than what value?
25. If the repeated sampling occurs as described above, then 5.48% of the time the sample means that result are more than what value?

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.9	.00005	.00005	.00004	.00004	.00004	.00004	.00004	.00004	.00003	.00003
-3.8	.00007	.00007	.00007	.00006	.00006	.00006	.00006	.00005	.00005	.00005
-3.7	.00011	.00010	.00010	.00010	.00009	.00009	.00008	.00008	.00008	.00008
-3.6	.00016	.00015	.00015	.00014	.00014	.00013	.00013	.00012	.00012	.00011
-3.5	.00023	.00022	.00022	.00021	.00020	.00019	.00019	.00018	.00017	.00017
-3.4	.00034	.00032	.00031	.00030	.00029	.00028	.00027	.00026	.00025	.00024
-3.3	.00048	.00047	.00045	.00043	.00042	.00040	.00039	.00038	.00036	.00035
-3.2	.00069	.00066	.00064	.00062	.00060	.00058	.00056	.00054	.00052	.00050
-3.1	.00097	.00094	.00090	.00087	.00084	.00082	.00079	.00076	.00074	.00071
-3.0	.00135	.00131	.00126	.00122	.00118	.00114	.00111	.00107	.00104	.00100
-2.9	.00187	.00181	.00175	.00169	.00164	.00159	.00154	.00149	.00144	.00139
-2.8	.00256	.00248	.00240	.00233	.00226	.00219	.00212	.00205	.00199	.00193
-2.7	.00347	.00336	.00326	.00317	.00307	.00298	.00289	.00280	.00272	.00264
-2.6	.00466	.00453	.00440	.00427	.00415	.00402	.00391	.00379	.00368	.00357
-2.5	.00621	.00604	.00587	.00570	.00554	.00539	.00523	.00508	.00494	.00480
-2.4	.00820	.00798	.00776	.00755	.00734	.00714	.00695	.00676	.00657	.00639
-2.3	.01072	.01044	.01017	.00990	.00964	.00939	.00914	.00889	.00866	.00842
-2.2	.01390	.01355	.01321	.01287	.01255	.01222	.01191	.01160	.01130	.01101
-2.1	.01786	.01743	.01700	.01659	.01618	.01578	.01539	.01500	.01463	.01426
-2.0	.02275	.02222	.02169	.02118	.02068	.02018	.01970	.01923	.01876	.01831
-1.9	.02872	.02807	.02743	.02680	.02619	.02559	.02500	.02442	.02385	.02330
-1.8	.03593	.03515	.03438	.03362	.03288	.03216	.03144	.03074	.03005	.02938
-1.7	.04457	.04363	.04272	.04182	.04093	.04006	.03920	.03836	.03754	.03673
-1.6	.05480	.05370	.05262	.05155	.05050	.04947	.04846	.04746	.04648	.04551
-1.5	.06681	.06552	.06426	.06301	.06178	.06057	.05938	.05821	.05705	.05592
-1.4	.08076	.07927	.07780	.07636	.07493	.07353	.07215	.07078	.06944	.06811
-1.3	.09680	.09510	.09342	.09176	.09012	.08851	.08691	.08534	.08379	.08226
-1.2	.11507	.11314	.11123	.10935	.10749	.10565	.10383	.10204	.10027	.09853
-1.1	.13567	.13350	.13136	.12924	.12714	.12507	.12302	.12100	.11900	.11702
-1.0	.15866	.15625	.15386	.15151	.14917	.14686	.14457	.14231	.14007	.13786
-0.9	.18406	.18141	.17879	.17619	.17361	.17106	.16853	.16602	.16354	.16109
-0.8	.21186	.20897	.20611	.20327	.20045	.19766	.19489	.19215	.18943	.18673
-0.7	.24196	.23885	.23576	.23270	.22965	.22663	.22363	.22065	.21770	.21476
-0.6	.27425	.27093	.26763	.26435	.26109	.25785	.25463	.25143	.24825	.24510
-0.5	.30854	.30503	.30153	.29806	.29460	.29116	.28774	.28434	.28096	.27760
-0.4	.34458	.34090	.33724	.33360	.32997	.32636	.32276	.31918	.31561	.31207
-0.3	.38209	.37828	.37448	.37070	.36693	.36317	.35942	.35569	.35197	.34827
-0.2	.42074	.41683	.41294	.40905	.40517	.40129	.39743	.39358	.38974	.38591
-0.1	.46017	.45620	.45224	.44828	.44433	.44038	.43644	.43251	.42858	.42465
-0.0	.50000	.49601	.49202	.48803	.48405	.48006	.47608	.47210	.46812	.46414

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.0	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
0.1	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.2	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.3	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.0	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
0.7	.78814	.79103	.79389	.79673	.77033	.80234	.80511	.80785	.81057	.81327
0.8	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.83343 .87698	.87900	.88100	.88298
1.1	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.90588	.92647	.91309	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899
2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361
2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520
2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.99643
2.7	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.99736
2.8	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.99807
2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.99861
3.0	.99865	.99869	.99874	.99878	.99882	.99886	.99889	.99893	.99896	.99900
3.1	.99903	.99906	.99910	.99913	.99916	.99918	.99921	.99924	.99926	.99929
3.2	.99931	.99934	.99936	.99938	.99940	.99942	.99944	.99946	.99948	.99950
3.3	.99952	.99953	.99955	.99957	.99958	.99960	.99961	.99962	.99964	.99965
3.4	.99966	.99968	.99969	.99970	.99971	.99972	.99973	.99974	.99975	.99976
3.5	.99977	.99978	.99978	.99979	.99980	.99981	.99981	.99982	.99983	.99983
3.6	.99984	.99985	.99985	.99986	.99986	.99987	.99987	.99988	.99988	.99989
3.7	.99989	.99990	.99990	.99990	.99991	.99991	.99992	.99992	.99992	.99992
3.8	.99993	.99993	.99993	.99994	.99994	.99994	.99994	.99995	.99995	.99995
3.9	.99995	.99995	.99996	.99996	.99996	.99996	.99996	.99996	.99997	.99997